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Active Automata Learning



Active Learning: Why?

5

Model? What model?



Active Learning: Why?
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[Aichernig, et al.  Model Learning and Model-Based Testing]
[Howar and Steffen. Active Automata Learning in Practice]

[Vaandrager. Model Learning]



Active Learning: What?

System Under 
Learning

Conformance 
Tester

Teacher
Membership (Output) Query

Query Output

Equivalence Query
(Hypothesis)

Yes/No, Counterexample

7

[Dana Angluin. Learning regular sets from queries and counterexamples. I&C. 1987]

Learner
Hypothesis



Active Learning: How?
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Active Learning: What?
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Good hypothesis?
Can I check that before asking the teacher an equivalence query?

Learner
Hypothesis



Active Learning: How?

12

Consistent: ∀𝑝, 𝑝! ∈ 𝑆" & 𝑝 ≅ 𝑝! ⇒ ∀𝑖 ∈ 𝐼 𝑝. 𝑖 ≅ 𝑝!. 𝑖



Active Learning: How?
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Active Learning: How?
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16Closed (Complete): ∀𝑝 ∈ 𝑆" . 𝐼" ∃𝑝! ∈ 𝑆" & 𝑝 ≅ 𝑝!
Consistent: ∀𝑝, 𝑝! ∈ 𝑆" & 𝑝 ≅ 𝑝! ⇒ ∀𝑖 ∈ 𝐼 𝑝. 𝑖 ≅ 𝑝!. 𝑖
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Equivalence Queries

18

[Broy, Jonsson, Katoen, Leucker, and Pretschner. Model-Based Testing of Reactive Systems]

• Random walk: surprisingly efficient, no guarantees

• Complete model-based tests (W Method, WP Method): 
• Two major phases: 
• establishing a tour of hypothesis states in the SUL
• Testing all pairs of states and inputs, 

checking for the correct output and target state
• Proven guarantee of detecting all differences wrt. a given fault model 
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How should we process CE?
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Counter-Example Processing 

21[Irfan, Oriat, Groz. Model Inference and Testing. Adv. Comp. 2013 ]
[Rivest and Schapire. Inference of finite automata using homing sequence. I&C. 1993]



Counter-Example Processing 

22[Irfan Oriat, Groz. Angluin-style finite-state machine inference with non-optimal counter-examples. ]
[Rivest and Schapire. Inference of finite automata using homing sequence. I&C. 1993]



Active Learning: What?
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Beyond L*
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[M. Isberner. Foundations of Active Automata Learning An Algorithmic Perspective. Ph.D. Thesis. 2015]
[Vaandrager et al. A New Approach for Active Automata Learning Based on Apartneess.]



Beyond Finite Automata

25

[Tappler, Muškardin, Aichernig, Pill. Active Model Learning for Stochastic Automata.]
[Bacci, Ingolfsdottir, Larsen, Reynouard. Active Learning of Markov Decision Processes using Baum Welch Algorithm.]
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Adaptive Learning



Why?

28



What?

29

Given an evolving system that 
changed over time
how can we efficiently
learn its evolved behavior?

How sensitive is it to 
the amount of evolution?

[Groce, Peled, and Yannakakis. Adaptive model checking. 2002]
[Chaki, Clarke, Sharygina, Sinha. 
Verification of evolving software via component substitutability analysis. 2008] 



How?
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swPrm
Anything redundant?



How?
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How?

32

swPrm

New experiments?



How?
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Does it Really work?

34

[https://www.openssl.org/] 
[De Ruiter. A tale of the openssl state machine. 2016 ]
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DOES IT REALLY WORK?

Given an evolving system that 
changed over time
how can we efficiently
learn its evolved behavior?

How sensitive is it to 
the amount of evolution?



Does it Really work?
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[Damasceno, M.R. Mousavi and A. Simao. 
Learning to Reuse: Adaptive Model Learning for Evolving Systems. iFM’19 ]

https://www.cs.le.ac.uk/people/mm789/pub/mousavi-ifm-2019.pdf
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Product-Line Learning



Why?
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40

Given an evolving system that 
changed in space
how can we succintly
summarise the variability?

How sensitive is it to 
the number of configuration 
samples?

Why?



Variability-Aware Behaviour: 
Featured Transition System (FTS)

Feature 
Expression

Static Variability:
Feature Model (FM)

Optional 
feature

Choose one or 
both

…

41

What?
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What?

[Damasceno, Mousavi, Simao.
Learning by Sampling: Learning Behavioral Family Models 
from Software Product Lines. EMSE 21]
[Tavassoli, Damasceno,  Khosravi, Mousavi, 
Adaptive Behavioral Model Learning 
for Software Product Lines. SPLC 2022] 

[Fortz, Temple, Devroey, Heymans, Perrouin. 
VaryMinions: Leveraging RNNs to Identify Variants 
in Event Logs. MalTeSQuE’21] 
[Fortz. Variability-aware Behavioural Learning. 
SPLC  Doctoral Sumposium’23]
[Fortz. LIFTS: learning featured transition systems.
SPLC  Doctoral Sumposium’21]

Variability-Aware Learner Variability-Aware Teacher
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Learner

Variability-Aware Teacher
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4
4 Featured-L⭑ (FL⭑)



Model Features Products States Transitions Actions

Forum 5 6 5 5 5

SVM 9 24 9 13 13

Minepump 9 32 25 41 24

CP Terminal 21 4.774 11 17 16

SferionTM 25 64 525 46 12

4
5 Case Studies

Mine Pump control



4
6 Evaluation Metrics

RQ1 How to automatically learn Featured Transition Systems? 
• RQ1.1 Time
• RQ1.2 Number of membership queries
• RQ1.3 Number of equivalence queries and learning rounds 
• RQ1.4 Number of resets
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Results

Model Time MQ EQ Rounds Resets

Forum 1 s. 546 7 3 15.596

SVM 9 s. 19.836 23 6 219.430

Minepump 9 m. 186.984 54 11 2,934,811

CP Terminal 17 m. 39.780 33 9 436.942

SferionTM 117 m. 72.803 363 6 57,057,295



4
8 Contributions

• Observation table of 8,904 prefixes X 21 suffixes (Minepump) 
• Up to 129 states and 356 transitions (SferionTM)

• After simplification:
77 % to 98 % of reduction for the observation table
up to 80 % of reduction for the automaton (Minepump)

• Less than 2 hours of execution for each study ( 2 Cores, 2 Sockets, 16Go RAM)

• FE as first-class citizen

• Direct mapping on transitions

• Fully family-based approach



49

What?

[Damasceno, Mousavi, Simao.
Learning by Sampling: Learning Behavioral Family Models 
from Software Product Lines. EMSE 21]
[Tavassoli, Damasceno,  Khosravi, Mousavi, 
Adaptive Behavioral Model Learning 
for Software Product Lines. SPLC 2022] 

[Fortz, Temple, Devroey, Heymans, Perrouin. 
VaryMinions: Leveraging RNNs to Identify Variants 
in Event Logs. MalTeSQuE’21] 
[Fortz. 
SPLC  Doctoral Sumposium’21 and ‘23]

Variability-Aware Learner Variability-Aware Teacher



What?
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[Damasceno, Mousavi, Simao.
Learning by Sampling: Learning Behavioral Family Models from Software Product Lines. EMSE 21] 

https://www.cs.le.ac.uk/people/mm789/pub/mousavi-emse-2020.pdf
https://www.cs.le.ac.uk/people/mm789/pub/mousavi-emse-2020.pdf


How?

51

[N. Walkinshaw and K. Bogdanov, 
Automated Comparison of State-Based Software Models 
in Terms of Their Language and Structure.]



5
2

N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

How?



The FFSMDiff  algorithm



5
4

Experiment Design 



Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size 5

5

Analysis of Results: Size 
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Pearson correlation coefficient

Analysis of Results 
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Analysis of Results: Sampling
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[Damasceno, Mousavi, Simao.
Learning by Sampling: Learning Behavioral Family Models from 
Software Product Lines. EMSE 21] 

https://www.cs.le.ac.uk/people/mm789/pub/mousavi-emse-2020.pdf
https://www.cs.le.ac.uk/people/mm789/pub/mousavi-emse-2020.pdf
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Building a repository of queries that 
for changes in space

PL*

[Tavassoli, Damasceno,  Khosravi, Mousavi, 
Adaptive Behavioral Model Learning for Software Product 
Lines. SPLC 2022] 
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Compositional Learning



Interleaving Parallel Composition

61

Interleaving Parallel Systems
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I1

I2

In



CL* Algorithm
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Merge 
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Initial Actions Partition

(singleton sets)

Actions Partition

63



CL* Algorithm - Example

I = {a, b, c, d}
O = {0, 1}

SUL

SUL’s 
Components

64



Partially Learn 
Components
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{a}, {b}, {c}, {d}
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CL* Algorithm - Example
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CL* Algorithm - Example



CE = ab
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CL* Algorithm - Example
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CL* Algorithm - Example
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CL* Algorithm - Example
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CL* Algorithm - Example
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CL* Algorithm - Example
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Experiments: Subject Systems

● Body Comfort System
○ An automotive software product line of  Volkswagen Golf model. 
○ Contains 27 components

● Benchmarks
○ 100 FSMs
○ 2 to 9 components
○ 0 to 3840 states, average: 1278

73



Experiments: Performance 

L* #resetsCL* #resets CL* total cost L* total cost
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Experiments: Improvement
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Experiments: Effect of Parallelism

The improvement is positively correlated 
with the number of components.

L* CL*

76

[Labbaf, Groote, Hojjat, Mousavi, Compositional Learning for Interleaving Parallel Automata.  FOSSACS 2023] 
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Thank you very much!

Mohammad Mousavi
mohammad.mousavi@kcl.ac.uk
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